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Abstract. We consider a spontaneously broken gauge theory based on the standard model (SM) group
G = SU(2) × U(1) with scalar fields that carry arbitrary representations of G, and we investigate some
general properties of the charged and neutral current involving these fields. In particular we derive the
conditions for having real or complex couplings of the Z boson to two different neutral or charged scalar
fields, and for the existence of CP-violating Z-scalar-scalar couplings. Moreover, we study models with
the same fermion content as in the SM, with one SU(2) Higgs singlet, and an arbitrary number of Higgs
doublets. We show that the structure of the Z-Higgs boson and of the Yukawa couplings in these models
can be such that CP-violating Zbb̄G form factors which conserve chirality are induced at the one-loop
level.

1 Introduction

The standard model (SM) of elementary particle physics
[1] has been very successful, so far, when compared to ex-
periments. For instance LEP1 and SLC, with its precision
data, have proved to be an ideal testing ground of the SM,
where the theory, including its quantum corrections, has
been checked (for recent reviews, see [2,3]). However, one
crucial aspect of the SM has remained practically unex-
plored experimentally till to date: the electroweak symme-
try breaking sector. In the standard picture an elementary
scalar field1 is responsible for spontaneous breaking of the
electroweak gauge group G = SU(2) × U(1) and for the
generation of particle masses [4,5]. However, extensions
of the SM, for which there are a number of well-known
theoretical motivations, almost invariably entail a larger
scalar field content than in the SM. That is, additional
Higgs fields, but possibly also scalar leptoquarks or, in su-
persymmetric extensions of the SM, squarks and sleptons.

In this article we shall investigate an SU(2) × U(1)
gauge theory with an arbitrary number of scalar fields.
For ease of notation we will collectively denote these fields
as Higgs fields. Our aim is to answer some general ques-
tions concerning the charged and in particular the neutral
current involving these fields, namely:
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1 Other scenarios for electroweak symmetry breaking like

technicolor models have been discussed [6], but remain less
well-developed theoretically and seem to be disfavoured by the
data; see, e.g., [7]

What are the conditions for having a real or complex
coupling of the Z boson to two different neutral or charged
physical Higgs fields?

Can there be CP-violating Z-Higgs couplings? What
are the conditions that complex phases in such couplings
can or cannot be “rotated away”?

Our article is organised as follows. In Sect. 2 we in-
troduce the general Higgs field and discuss spontaneous
symmetry breaking. In Sect. 3 we study the question of
non-diagonal Z-Higgs-Higgs boson couplings. In Sect. 4
we apply the general formalism to models with fermion
content as in the SM and with one SU(2) Higgs singlet
and any number l of Higgs doublets. In Sect. 5 we show
how such models with l ≥ 3 Higgs doublets provide all
the prerequisites for generating chirality-conserving, CP-
violating effective Zbb̄G couplings at the one-loop level.
Section 6 contains our conclusions. In the appendices we
discuss some properties of the general SU(2) × U(1) rep-
resentation carried by scalar fields.

2 The general Higgs field
and spontaneous symmetry breaking

We consider a gauge theory based on the electroweak
gauge group G = SU(2) × U(1) (for our notation cf. [8]).
The elements of G will be denoted by U . A suitable con-
crete realization ofG is by 2×2 matrices with the following
parametrization:

U(ϕ, ψ) = exp
[
i
1
2
τaϕa + iy0ψ

]
(2.1)
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where τa (a = 1, 2, 3) are the Pauli matrices and ϕ = (ϕa)
is restricted to

|ϕ| < 2π. (2.2)

We assume y−1
0 to be a natural number (y−1

0 = 1, 2, ...)
which will be chosen conveniently later on, and we have

|ψ| < πy−1
0 . (2.3)

The parametrization (2.1) is almost everywhere regular on
G. For our purposes below it suffices to note that (2.1) is
regular in a suitable neighbourhood of the unit element of
G: U = 1l2. Taking an arbitrary element U0 ∈ G, we get a
parametrization of the elements of G which is regular in
a neighbourhood of U0 by setting

U = U(ϕ, ψ) · U0. (2.4)

From (2.1) to (2.4) we see that G is a differentiable, com-
pact manifold.

In the following χ denotes a Higgs field that transforms
under G according to an arbitrary representation, which is
in general reducible and contains real orthogonal as well as
complex unitary parts2. Let us first show that without loss
of generality we can assume χ to carry a real orthogonal
representation of G. To see this, consider a Higgs field3 φ
carrying a unitary representation of dimension r:

φ =




φ1

.

.

.

φr


 , φ ∈ Cr (2.5)

where the action of G is as follows:

U : φ −→ Dr(U)φ, (2.6)

D†
r(U)Dr(U) = 1lr,

U ∈ G. (2.7)

We define a corresponding 2r component real Higgs field
χ by setting

χ = (χα,j)
(α = 1, 2; j = 1, .., r),
χ1,j := Reφj,

χ2,j := Imφj. (2.8)

Furthermore we define the real 2r × 2r matrices

R2r(U) := 1l2 ⊗ ReDr(U) − ε⊗ Im Dr(U) (2.9)
2 We always stay in the framework of local relativistic quan-

tum field theory. Thus for instance self-conjugate scalar fields
of half integral SU(2) representations which exist in nonlocal
theories [9] are not considered

3 Here and in the following we suppress the space-time vari-
able x, if there is no danger of misunderstanding. Thus φ ∈ Cr

in (2.5) and below is to be read as φ(x) ∈ Cr for each x. Like-
wise we introduce in (2.8) a 2r component real vector χ(x)

where

ε =

(
0 1

−1 0

)
. (2.10)

It is easy to see that we have

φ†φ = χTχ. (2.11)

The transformation (2.6) corresponds to

U : χ −→ R2r(U)χ (2.12)

and
U −→ R2r(U)

is a real orthogonal representation of G:

R2r(U)R2r(U ′) = R2r(UU ′),

R2r(U†) = RT2r(U),

RT2r(U)R2r(U) = 1l2r,
(U,U ′ ∈ G). (2.13)

We can thus start with a general real Higgs field χ with
n components

χ =




χ1

.

.

.

χn


 , (2.14)

carrying an orthogonal representation of G:

U : χ −→ R(U)χ,

RT (U)R(U) = 1l. (2.15)

For infinitesimal transformations U(δϕ, δψ) (cf. (2.1)) we
have

R(U(δϕ, δψ)) = 1l + δϕaT̃a + δψỸ . (2.16)

Here T̃a and Ỹ are the real antisymmetric matrices repre-
senting the generators of G:

T̃a + T̃Ta = 0,

Ỹ + Ỹ T = 0; (2.17)

[T̃a, T̃b] = −εabcT̃c,
[Ỹ , T̃a] = 0. (2.18)

We define the corresponding generator of the electromag-
netic gauge group U(1)em as usual by

Q̃ = T̃3 + Ỹ . (2.19)

We note the commutation relations following from (2.18)
and (2.19):

[Q̃, T̃1] = −T̃2,

[Q̃, T̃2] = T̃1,

[Q̃, T̃3] = 0. (2.20)
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Consider next the matrix Ỹ T Ỹ which is symmetric and
positive semi-definite. We assume that the eigenvalues y2

j

of Ỹ T Ỹ satisfy

|yj |.y−1
0 = integer
(j = 1, ..., n). (2.21)

The representation of G in the space of Higgs fields is then
single-valued (cf. Appendix A).

The reason for going through these subtleties here is
because we want to avoid the case where the Higgs repre-
sentation of G is only single-valued when considered as a
representation of the universal covering group of G, which
is not a compact manifold. This would happen if the ratio
of two numbers |yj | and |yk| was irrational.

We shall now study the Higgs part of the Lagrangian
describing an SU(2) × U(1) gauge theory with the arbi-
trary Higgs field χ:

Lχ =
1
2
(Dµχ)T (Dµχ) − V (χ). (2.22)

Here
Dµχ := (∂µ + gW a

µ T̃a + g′BµỸ )χ (2.23)

is the covariant derivative of χ and g and g′ are the SU(2)
and U(1) coupling constants, respectively. The gauge bo-
son fields are denoted by W a

µ and Bµ. The Higgs potential
V (χ) must be invariant under G and is constrained by the
requirements of hermiticity and renormalizabilty. Thus V
can contain up to fourth powers of χ.

In the following we let V largely unspecified apart from
assuming that it leads to spontaneous symmetry breaking
where only the electromagnetic gauge group U(1)em re-
mains unbroken. Let v be the vector of vacuum expecta-
tion values of χ (at tree level):

v =< 0|χ|0 >6= 0. (2.24)

We must then have
Q̃v = 0, (2.25)

and the three vectors

T̃av (a = 1, 2, 3) (2.26)

must be linearly independent. Using (2.17)-(2.20) it is easy
to derive the following relations:

vT T̃av = 0, (a = 1, 2, 3), (2.27)

vT T̃1T̃1v = vT T̃2T̃2v,

vT T̃1T̃2v = −vT T̃2T̃1v, (2.28)

vT T̃3T̃3v = vT Ỹ Ỹ v,

vT T̃3Ỹ v = −vT Ỹ Ỹ v. (2.29)

Let us next define the shifted Higgs field χ′ by

χ′ := χ− v. (2.30)

We get then

Dµχ = (∂µ + Ω̃µ)χ

= Ω̃µv + ∂µχ
′ + Ω̃µχ

′, (2.31)

where
Ω̃µ := gW a

µ T̃a + g′BµỸ . (2.32)

In terms of the physical vector boson fields Zµ, Aµ we have
(s ≡ sin θw, c ≡ cos θw, e = gs = g′c):

Zµ = cW 3
µ − sBµ,

Aµ = sW 3
µ + cBµ; (2.33)

Ω̃µ =
e

s

(
W 1
µ T̃1 +W 2

µ T̃2

)
+

e

sc
Zµ

(
T̃3 − s2Q̃

)
+ eAµQ̃.

(2.34)
With this the Lagrangian Lχ (2.22) reads:

Lχ =
1
2
vT Ω̃Tµ Ω̃

µv +
1
2
∂µχ

′T∂µχ′ − vT Ω̃µ∂
µχ′

−χ′T Ω̃µ∂µχ′ − vT Ω̃µΩ̃
µχ′ +

1
2
χ′T Ω̃Tµ Ω̃

µχ′

−V (v + χ′). (2.35)

The successive terms on the r.h.s. of (2.35) will be denoted
by L(i)

χ , i = 1, ..., 7.
Aspects of such a Lagrangian (2.35) have been studied

previously, for instance the Z −W -Higgs coupling in [10,
11], Higgs triplets in [12,13], and radiative corrections for
models with Higgs triplets in [14,15].

Let us first study the term bilinear in the vector boson
and Higgs fields in (2.35).

L(3)
χ : = −vT Ω̃µ∂µχ′

= −e

s

[
W 1
µ∂

µ(vT T̃1χ
′) +W 2

µ∂
µ(vT T̃2χ

′)
]

− e

sc
Zµ∂

µ(vT T̃3χ
′). (2.36)

In order to discuss the particle content and the couplings
of physical particles, it is convenient to use the unitary
gauge (for a review and an extensive use of this gauge cf.
[5]), which is defined by the condition:

vT T̃aχ
′ = 0 for a = 1, 2, 3. (2.37)

Can (2.37) always be met? An affirmative answer to this
question was given in [5] for the case of a compact group.
The proof of [5] goes through also in our case since G
is also compact and, by the condition (2.21), we have ex-
cluded multivalued representations of SU(2)×U(1) which
would force us to go to the non-compact universal covering
group.

To recall the construction of [5] we note first that due
to (2.27) the condition (2.37) is equivalent to

vT T̃aχ = 0 for a = 1, 2, 3. (2.38)

Since vT T̃a (a = 1, 2, 3) are linearly independent
(cf. (2.26)), (2.38) defines a n− 3 dimensional linear sub-
space Rn−3 ⊂ Rn.

Rn−3 = {χ | vT T̃aχ = 0 for a = 1, 2, 3}. (2.39)
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Let now χ be an arbitrary vector in Rn and consider the
following real function on the compact manifold G

U → f(U) = vTR(U)χ
(U ∈ G). (2.40)

U0 ∈ G which maximises f(U) transforms the arbitrary
vector χ ∈ Rn into a vector R(U0)χ lying in the subspace
Rn−3 (2.39) of the vectors compatible with the gauge con-
dition. Thus the bilinear couplings of W 1,2

µ (x), Zµ(x) to
the Higgs field χ(x) in (2.36) can at any space time point x
be rotated away by a suitable transformation U0(x) ∈ G,
where U0(x) will in general, of course, depend on x. In Ap-
pendix B we discuss further some properties of the gauge
orbits of our scalar fields.

Having disposed of the bilinear vector boson-Higgs
field part L(3)

χ of Lχ (2.35) with the help of the gauge
condition (2.37) we turn next to the term L(1)

χ , bilinear in
the vector boson fields, i.e., the vector boson mass term.
From (2.35), (2.34) and using (2.28), (2.29), we find

L(1)
χ =

1
2
vT Ω̃Tµ Ω̃

µv

=
1
2

(e
s

)2 1
2
vT (T̃T1 T̃1 + T̃T2 T̃2)v

·(W 1
µW

1µ +W 2
µW

2µ)

+
1
2

( e
sc

)2
vT T̃T3 T̃3v · ZµZµ. (2.41)

From (2.41) we can read off the W and Z masses (at tree
level)

m2
W =

(e
s

)2 1
2
vT (T̃T1 T̃1 + T̃T2 T̃2)v

=
(e
s

)2 1
2
vT (T̃Ta T̃a − Ỹ T Ỹ )v,

m2
Z =

( e
sc

)2
vT T̃T3 T̃3v

=
( e
sc

)2
vT Ỹ T Ỹ v. (2.42)

This result is of course well known.
Using the decomposition of the representation U →

R(U) defined in (2.15) but considered as a unitary repre-
sentation in Cn as explained in appendix A, we can write
(2.42) as follows (cf. (A.7)-(A.16)):

m2
W =

(e
s

)2 1
2

∑
t,y

[t(t+ 1) − y2]vT P(t, y)v,

m2
Z =

( e
sc

)2∑
t,y

y2vT P(t, y)v, (2.43)

where P(t, y) is the projector on the subspace with repre-
sentation (t, y) of G. Here t and y are the isospin and hy-
percharge quantum numbers, respectively. As we see from
(A.16), only representations with y = −t, −t + 1, ..., t
can contribute with nonzero weight vT P(t, y)v 6= 0 in the
sums (2.43). For the convenience of the reader we have

Table 1. Values for the weak isospin t, the weak hypercharge
y and the ρ parameter (2.44), (2.45) for the representations
of G = SU(2) × U(1) with t ≤ 3 which can give a nonzero
contribution in the sums (2.43)

t y t(t + 1) − y2 y2 [t(t + 1) − y2]/(2y2)
0 0 0 0
1/2 ±1/2 1/2 1/4 1
1 ±1 1 1 1/2
1 0 2 0 ∞
3/2 ±3/2 3/2 9/4 1/3
3/2 ±1/2 7/2 1/4 7
2 ±2 2 4 1/4
2 ±1 5 1 5/2
2 0 6 0 ∞
5/2 ±5/2 5/2 25/4 1/5
5/2 ±3/2 13/2 9/4 13/9
5/2 ±1/2 17/2 1/4 17
3 ±2 8 4 1
3 ±1 11 1 11/2
3 0 12 0 ∞

listed in Table 1 the values of (t, y) for t ≤ 3 satisfying
the above condition and the corresponding values for the
ρ parameter, defined as usual:

ρ :=
m2
W

m2
Z cos2 θW

. (2.44)

From (2.43) we get

ρ =

∑
t,y[t(t+ 1) − y2]vT P(t, y)v

2
∑
t,y y

2vT P(t, y)v
. (2.45)

Due to the non-negativity of the weights vT P(t, y)v ≥ 0
(cf. (A.17)) the value of ρ for an arbitrary representation
of G must be inside the interval spanned by the values of
ρ from the irreducible representations contributing with
nonzero weight in (2.43). Note that the tree-level relation
ρ = 1 holds, apart from the Higgs doublet representations
t = 1/2, y = ±1/2, also for the triplet representations t =
3, y = ±2. (Actually, there are other, higher-dimensional
representations satisfying this tree level relation; see for
instance [11].)

3 The general structure of the Z-Higgs-Higgs
and W -Higgs-Higgs vertices

In this section we derive some properties of the vertices de-
scribing the coupling of the Z and W bosons to two phys-
ical Higgs particles. In particular we give the conditions
for having a non-diagonal real or complex Z-Higgs-Higgs
boson coupling.
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The corresponding term of the Lagrangian (2.35) is

L(4)
χ = −χ′T Ω̃µ∂µχ′

= −e

s
W 1
µχ

′T T̃1∂
µχ′ − e

s
W 2
µχ

′T T̃2∂
µχ′

− e

sc
Zµχ

′T (T̃3 − s2Q̃)∂µχ′

−eAµχ′T Q̃∂µχ′, (3.1)

where χ′ is the shifted Higgs field (cf. (2.30)), a vector in
the space Rn−3 (2.39). It is convenient to introduce the
projector onto this space of the physical Higgs fields. For
this we define 3 vectors wa (a = 1, 2, 3) in Rn:

wa : = T̃av · (vT T̃Ta T̃av)
−1/2

(no summation over a). (3.2)

From (2.28), (2.29) and (2.42) we find

w1 = T̃1v · e

smW
,

w2 = T̃2v · e

smW
,

w3 = T̃3v · e

scmZ
, (3.3)

wTa wb = δab. (3.4)

From (2.39) we see that the vectors wa are the normalised
vectors orthogonal to Rn−3. The projector onto Rn−3 is
thus given by

P
′ := 1l − waw

T
a . (3.5)

From (2.20) and (2.25) we get

Q̃w1 = −w2,

Q̃w2 = w1,

Q̃w3 = 0, (3.6)

which leads to
[P′, Q̃] = 0. (3.7)

Thus P
′ commutes with the generator of electric charge.

In general, however, P
′ will not commute with T̃3.

When discussing the couplings in (3.1) we have to re-
strict the coupling matrices T̃a, Q̃ to the space of physical
Higgs fields. This can be done with the help of the projec-
tor P

′ (3.5). We define the following matrices

T̃ ′′
a := P

′T̃aP′ (a = 1, 2, 3),

Q̃′′ := P
′Q̃ P

′. (3.8)

The matrices (3.8) are block-diagonal, with non-trivial
(n − 3) × (n − 3) submatrices T̃ ′

a, Q̃
′ on Rn−3 and zero

on its orthogonal complement. In the following we shall
only deal with the submatrices on Rn−3. Equations (2.20)
and (3.7) imply that

[T̃ ′
3, Q̃

′] = 0. (3.9)

Similarly we find

[Q̃′, T̃ ′
1] = −T̃ ′

2,

[Q̃′, T̃ ′
2] = T̃ ′

1. (3.10)

Note, however, that the matrices T̃ ′
a (a = 1, 2, 3) will in

general not satisfy the SU(2) commutation relations. Our
aim is now to diagonalise the matrices Q̃′ and T̃ ′

3 and to
arrange the components of the physical Higgs field χ′ into
charge eigenstates. However, since Q̃′ and T̃ ′

3 are antisym-
metric real matrices on the real space Rn−3, this requires
some nontrivial work similar to the one of Appendix A.

Let us embed the space Rn−3 into the complex space
Cn−3 and define matrices:

T ′
a =

1
i
T̃ ′
a, (a = 1, 2, 3),

Q′ =
1
i
Q̃′. (3.11)

We have

T̃
′T
a = −T̃ ′

a,

Q̃
′T = −Q̃′; (3.12)

T ′
a = −T ′T

a = T ′†
a = −T ′∗

a ,

Q′ = −Q′T = Q′† = −Q′∗; (3.13)

[T ′
3, Q

′] = 0. (3.14)

It follows from (3.13), (3.14) that the hermitian matrices
Q′, T ′

3 can be diagonalized simultaneously in Cn−3. Let
the eigenvalue pairs be (q, t′3). We consider the double re-
solvent

1
(ξ −Q′)(η − T ′

3)
=
∑
q,t′3

P(q, t′3)
(ξ − q)(η − t′3)

(ξ, η ∈ C), (3.15)

where P(q, t′3) is the projector onto the subspace of eigen-
vectors associated with the eigenvalue pair (q, t′3). By tak-
ing the transposed of (3.15) and using (3.13) we find

1
(ξ +Q′)(η + T ′

3)
=
∑
q,t′3

P
T (q, t′3)

(ξ − q)(η − t′3)
, (3.16)

∑
q,t′3

P(q, t′3)
(ξ + q)(η + t′3)

=
∑
q,t′3

P
T (q, t′3)

(ξ − q)(η − t′3)
. (3.17)

Comparing the poles and residues on the r.h.s. and l.h.s.
of (3.17), we conclude that with (q, t′3) also (−q,−t′3) must
be an eigenvalue pair and (q, t′3) and (−q,−t′3) have the
same multiplicity. For the projectors we find

P(−q,−t′3) = P
T (q, t′3). (3.18)

We treat now the eigenspaces with q = 0 and with
q 6= 0 separately. Note that the eigenspace with q = 0
must always have dimension ≥ 1, since

χ′ = cv (c ∈ C, c 6= 0) (3.19)
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is an eigenvector of Q′ in Cn−3 with eigenvalue 0:

Q′(cv) = 0. (3.20)

Let us denote by Sq the subspace of Cn−3 correspond-
ing to charge eigenvalue q and arbitrary t′3. The projector
onto Sq is

P(q) =
∑
t′3

P(q, t′3). (3.21)

The hermiticity of P and (3.18) imply that P(0) is a real,
symmetric matrix which can also be considered as a pro-
jector in the real space Rn−3. Hence real eigenvectors
u1, ..., ur0 ∈ Rn−3 exist, such that

P(0)uj = uj ,

Q′uj = 0,
(j = 1, ..., r0),

P(0) =
r0∑
j=1

uju
T
j . (3.22)

A particular set of such eigenvectors uj can be con-
structed as follows. In the subspace corresponding to q =
t′3 = 0 (if this occurs at all) we take an arbitrary set of
normalised real eigenvectors uj . For q = 0, t′3 6= 0 we
consider the common eigenvectors of Q′ and T ′

3 in Cn−3

Q′u(0, t′3) = 0,
T ′

3u(0, t
′
3) = t′3u(0, t

′
3). (3.23)

From (3.13) we get

Q′u∗(0, t′3) = 0,
T ′

3u
∗(0, t′3) = −t′3u∗(0, t′3). (3.24)

This shows that u∗(0, t′3) are eigenvectors to Q′, T ′
3 with

eigenvalues (0,−t′3). Therefore the set of vectors

u(0, t′3), u∗(0, t′3), (t′3 > 0),

where we can choose the normalisation such that

u†(0, t′3)u(0, t
′′
3) = δt′3,t′′3 , (3.25)

forms a basis of eigenvectors for q = 0, t′3 6= 0. From (3.24)
we see that we also have

u∗†(0, t′3)u(0, t
′′
3) = 0. (3.26)

The vectors

u1(0, t′3) : =
√

2 Re u(0, t′3),

u2(0, t′3) : =
√

2 Im u(0, t′3),
(t′3 > 0), (3.27)

are then linearly independent, normalised vectors in Rn−3
which we can choose as basis vectors satisfying (3.22).
In this basis the real, antisymmetric matrix T̃ ′

3 has the

following structure in the q = 0 subspace: It is block-
diagonal, with possibly a number of zeros and then 2 × 2
matrices (

0 t′3
−t′3 0

)

where t′3 are the positive eigenvalues of the hermitian ma-
trix T ′

3:

T̃
′(0)
3 =




0
.

.

.

0

0 0

0
0 t′3

−t′3 0
0

0 0
.

.

.




. (3.28)

We can consider (3.28) as a standard form for T̃
′(0)
3 , the

submatrix of T̃ ′
3 in the q = 0 subspace.

For q 6= 0 we consider simultaneously the subspaces Sq
and S−q. We can then without loss of generality assume
q > 0. Let u(q, t′3) be the common eigenvectors of Q′ and
T ′

3 (cf.(3.11)) in Cn−3

Q′u(q, t′3) = qu(q, t′3),
T ′

3u(q, t
′
3) = t′3u(q, t

′
3), (3.29)

where t′3 runs over all eigenvalues of T ′
3 corresponding to

charge q and we have suppressed a possible degeneracy
index. From (3.13) we get

Q′u∗(q, t′3) = −qu∗(q, t′3),
T ′

3u
∗(q, t′3) = −t′3u∗(q, t′3). (3.30)

With suitable numbering and phases, the vectors u∗(q, t′3)
can thus be considered as the eigenvectors of Q′, T ′

3 in
S−q associated with the eigenvalue pair (−q,−t′3). We can
normalise u(q, t′3) to

u†(q, t′3)u(q, t
′′
3) = δt′3t′′3 (3.31)

and (3.30) implies

u∗†(q, t′3)u(q, t
′′
3) = 0. (3.32)

We can define real vectors u1,2(q, t′3) by

u1(q, t′3) : =
√

2 · Re u(q, t′3),

u2(q, t′3) : =
√

2 · Im u(q, t′3). (3.33)

From (3.31), (3.32) we find that u1,2(q, t′3) are linearly
independent real vectors in Rn−3 satisfying

uT1 (q, t′3)u1(q, t′′3) = δt′3t′′3 ,

uT2 (q, t′3)u2(q, t′′3) = δt′3t′′3 ,

uT1 (q, t′3)u2(q, t′′3) = 0. (3.34)
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Let us now choose the basis vectors in Rn−3 as fol-
lows. In the subspace S0 we take the uj of (3.22). In the
subspaces Sq + S−q (q > 0) we choose the vectors u1,2 of
(3.33) and denote them collectively by

u1,α, u2,α, (α = 1, 2, ...r),

where α stands for the pair (q, t′3) plus a possible degen-
eracy index. We can then decompose any given vector
χ′ ∈ Rn−3 as

χ′ =
r0∑
j=1

χ′
juj +

r∑
α=1

(χ′
1,αu1,α + χ′

2,αu2,α) (3.35)

and we get

χ
′Tχ′ =

r0∑
j=1

(χ′
j)

2 +
r∑

α=1

[(χ′
1,α)2 + (χ′

2,α)2]. (3.36)

The fields χ1,α, χ2α (α = 1, ..., r) corresponding to q 6= 0
can be rearranged into r complex Higgs fields. For this we
define

uα :=
1√
2
(u1,α + iu2,α),

φ′
α :=

1√
2
(χ′

1,α − iχ′
2,α). (3.37)

The uα are the complex eigenvectors u(q, t′3) of (3.29)
which we write now as

Q̃′uα = iqαuα,

T̃ ′
3uα = it′3,αuα,

(qα > 0). (3.38)

We get then

χ′ =
r0∑
j=1

χ′
juj +

r∑
α=1

(φ′
αuα + φ

′∗
α u

∗
α) (3.39)

1
2
χ

′Tχ′ =
1
2

r0∑
j=1

χ′
jχ

′
j +

r∑
α=1

φ
′∗
α φ

′
α, (3.40)

1
2
∂µχ

′T∂µχ′ =
1
2

r0∑
j=1

∂µχ
′
j∂
µχ′

j +
r∑

α=1

∂µφ
′∗
α ∂

µφ′
α, (3.41)

L(4)
χ = −e

{
AµJ

µ
H,em +

1
sc
ZµJ

µ
H,NC

+
1√
2s

(
W+
µ J

µ
H,CC +W−

µ J
µ†
HCC

)}
(3.42)

where

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) (3.43)

and JµH,em, J
µ
H,NC , J

µ
H,CC are the electromagnetic, neutral

and charged Higgs currents, respectively:

JµH,em = i
∑
α

qαφ
′∗
α

↔
∂µ φ′

α, (3.44)

JµH,NC =
1
2

∑
j,k

χ′
j T̃

′(0)
3,jk

↔
∂µ χ′

k+i
∑
α

(t′3,α−s2qα)φ
′∗
α

↔
∂µ φ′

α,

(3.45)

JµH,CC =
1
2
χ

′T (T̃ ′
1 + iT̃ ′

2)
↔
∂µ χ′,

(
↔
∂µ=

⇀

∂µ −
↼

∂µ) (3.46)

.
The fields χ′

j (j = 1, .., r0) correspond to neutral par-
ticles, and the fields φ′

α annihilate (create) particles of
charge eqα(−eqα). In (3.44)-(3.46) we have thus used a
basis where the electromagnetic current and the contribu-
tion of the charged fields to the neutral current are diag-
onal. The part of the neutral current from neutral fields
is written in the basis where T̃

′(0)
3 is in the standard form

(3.28).
Of course, the above basis is, in general, not identical to

the mass eigenbasis for the Higgs fields. The Higgs boson
mass matrix M is obtained from the bilinear term in the
potential V (2.22) expressed in terms of the shifted fields
χ′ (2.30):

V (v + χ′) = V (v) +
1
2
χ

′TMχ′ + .... (3.47)

Let
χ̂j (j = 1, ..., r0)

be the real fields diagonalising this mass matrix in the
neutral (q = 0) sector and let

φ̂q,α (α = 1, ..., rq)

be the complex mass eigenfields carrying charge q > 0.
We have then

χ̂ ≡



χ̂1

·
·
χ̂r0


 = V (0)T




χ′
1

·
·

χ′
r0


 , (3.48)

Φ̂q ≡



φ̂q,1

·
·

φ̂q,rq


 = V (q)†



φ′
q,1

·
·

φ′
q,rq


 , (3.49)

where V (0) is a real orthogonal r0 × r0 and the V (q) are
unitary rq × rq matrices. Of course, only Higgs fields of
the same charge mix. Inserting (3.48) and (3.49) in (3.44),
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(3.45), we get the following expressions for the electromag-
netic and neutral Higgs currents in terms of mass eigen-
fields:

JµH,em = i
∑
q>0

qΦ̂†
q

↔
∂µ Φ̂q, (3.50)

JµH,NC =
1
2

∑
j,k

χ̂j T̂
(0)
3,jk

↔
∂µ χ̂k + i

∑
q>0

Φ̂†
q(T̂

(q)
3 − s2q)

↔
∂µ Φ̂q.

(3.51)
Here we have for q = 0

T̂
(0)
3 = V (0)T T̃

′(0)
3 V (0), (3.52)

and for q > 0

T̂
(q)
3 = V (q)† · diag (t

′(q)
3,1 , ..., t

′(q)
3,rq

) · V (q) (3.53)

with t
′(q)
3,1 ..., t

′(q)
3,rq

the eigenvalues of T ′
3 occurring for charge

q. The matrices V (q) (q > 0) are the analogues of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [16] govern-
ing the quark-W-boson couplings. There is still some free-
dom in the choice of V (q), i.e. we can make the replacement

V (q) −→ U
(q)†
1 V (q)U

(q)
2 , (3.54)

where U
(q)
1 is a unitary matrix commuting with

diag (t
′(q)
3,1 , ..., t

′(q)
3,rq

) and U
(q)
2 is a unitary matrix com-

muting with the mass matrix for charge q. In particular
if, and only if, all mass eigenvalues and all t

′(q)
3,α corre-

sponding to charge q are different then U
(q)
1,2 are diago-

nal unitary matrices (apart from trivial renumbering of
the fields). Thus the questions concerning diagonal versus
non-diagonal real/complex couplings in the neutral cur-
rent involving physical Higgs fields can immediately be
answered: We find the following for charged physical Higgs
fields:

(1) A non-diagonal Z-Higgs-Higgs boson coupling re-
quires at least two Higgs fields with the same charge, but
different mass, being linearly related to fields with two
different eigenvalues t

′(q)
3,α of the matrix T ′

3 in the sector
corresponding to charge q. Here T ′

3 is related by a projec-
tion (cf. (3.8) ff.) to the matrix of the third component of
the weak isospin.

(2) If only two charged fields mix, the mixing matrix
V (q) can always be made real by a replacement (3.54).
Thus, in this this case, the non-diagonal Z-Higgs-Higgs
boson coupling can, without loss of generality, be assumed
to be real.

(3) A non-diagonal complex Z-Higgs-Higgs coupling
(whose phase(s) cannot be rotated away) for charged
Higgs bosons requires at least three Higgs fields of the
same charge with different masses, where these fields are
linearly related to fields with at least three different eigen-
values t

′(q)
3,α . For 3 Higgs fields the form of the mixing ma-

trix V (q) can be chosen in analogy to the CKM matrix for
3 quark generations.

In the neutral Higgs sector the Zχ̂χ̂ coupling matrix
T̂

(0)
3 (3.52) is, in general, an arbitrary antisymmetric ma-

trix. Indeed, V (0) in (3.48) can be an arbitrary orthogonal
matrix and any antisymmetric matrix T̂ (0)

3 can be brought
to the standard form (3.28) by an orthogonal transforma-
tion. On general grounds we did not find a restriction on
the possible values of t′3.

The charged scalar current (3.46) can also be straight-
forwardly expressed in terms of the physical Higgs fields.
From (3.10) we have

[Q̃′, T̃ ′
1 ± iT̃ ′

2] = ±i(T̃ ′
1 ± iT̃ ′

2). (3.55)

This guarantees that only fields differing by one unit of
charge couple in JµH,CC , as it must be by charge conserva-
tion. Otherwise we did not find any useful general state-
ment for this current.

4 A model with one Higgs singlet
and an arbitrary number of Higgs doublets

In this section we consider as a specific example a model
with one complex Higgs singlet φ0 of hypercharge y = 1
and l doublets φj(j = 1, ..., l) of hypercharge y = 1/2. The
Higgs boson Lagrangian (2.22) is then

Lχ = (Dµφ0)†Dµφ0 +
l∑

j=1

(Dµφj)†(Dµφj) − V, (4.1)

Dµφ0 = (∂µ + ig′Bµ)φ0,

Dµφj = (∂µ + igW a
µ

1
2
τa + ig′ 1

2
Bµ)φj ,

(j = 1, ..., l), (4.2)

φj =
(
φ1/2,j

φ−1/2,j

)
, (4.3)

V = V2 + V3 + V4, (4.4)

V2 = µφ†
0φ0 +

l∑
j,k=1

λjkφ
†
jφk,

(µ∗ = µ, λ∗
jk = λkj), (4.5)

V3 =
l∑

j,k=1

(κjkφ
†
0φ
T
j εφk + h.c.),

(κjk = −κkj , ε as in (2.10)), (4.6)

V4 = η0(φ
†
0φ0)2 +

l∑
j,k=1

ηjkφ
†
jφkφ

†
0φ0
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+
l∑

j,k,r,s=1

[
ξjkrs(φ

†
jεφ

†T
k )(φTr εφs)

+ζjkrs(φ
†
jτ
aεφ†T

k )(φTr ετ
aφs)

]
(η∗

0 = η0; η∗
jk = ηkj ;

ξjk,rs = −ξkj,rs = −ξjk,sr = ξ∗
sr,kj ;

ζjk,rs = ζkj,rs = ζjk,sr = ζ∗
sr,kj). (4.7)

We note that the general form of the Lagrangian (4.1)
is unchanged if we make a U(l) transformation on the l
Higgs doublets:

φj −→ Ujkφk . (4.8)

The vacuum expectation values of the Higgs fields are

< 0|φ0|0 >= 0,

< 0|φj |0 >=
(

0
vj

)
,

(j = 1, ..., l), (4.9)

where the vj are complex numbers in general. But by a
U(l) transformation (4.8) we can always rotate the Higgs
fields such that only v1 differs from zero and v1 > 0. Then
v1 must have the SM value

√
2v1 = (

√
2GF )−1/2 = 246

GeV where GF is Fermi’s constant.
The gauge condition (2.37) reduces then to a condi-

tion for the first Higgs doublet φ1 – as in the SM. Thus
we get the following set of Higgs fields after spontaneous
symmetry breaking: l complex fields of charge 1:

Φ =




φ0

φ1/2,2

.

.

.

φ1/2,l



, (4.10)

and 2l + 1 real fields of charge 0:

χ′ =




√
2Re(φ−1/2,1 − v1)√

2Reφ−1/2,2√
2Imφ−1/2,2

.

.√
2Reφ−1/2,l√
2Imφ−1/2,l



. (4.11)

In the following we will discuss mainly the charged
fields (4.10) further. As we can easily see from (4.4)-(4.7)
their mass matrix M(1) has the following structure:

M(1) =

(
M(1)

11 M(1)
1k

M(1)
j1 M(1)

jk

)
, (2 ≤ j, k ≤ l), (4.12)

where

M(1)
1k = −2v1κ1k, (k = 2, ..., l). (4.13)

Thus, the V3 term of the potential in (4.6) induces a mix-
ing of the singlet with the charged components of the dou-
blet Higgs fields.

Let us now consider the neutral current JµH,NC (3.45)
in our model. In the basis (4.10), (4.11) it reads

JµH,NC =
1
2
χ

′T T̃
′(0)
3

↔
∂µ χ′ + iΦ†(T

′(1)
3 − s2)

↔
∂µ Φ, (4.14)

where

T̃
′(0)
3 =




0 0 0 0

0
0 +1/2

−1/2 0
0 0

0 0
.

.

.

0

0 0 0
0 +1/2

−1/2 0



,

T
′(1)
3 =

(
0 0
0 1

2δjk

)
, (2 ≤ j, k ≤ l). (4.15)

Following the discussion in Sect. 3, we transform now to
the mass eigenbasis of the Higgs fields according to (3.48),
(3.49):

χ̂ = V (0)Tχ′,

Φ̂ = V (1)†Φ. (4.16)

Since T
′(1) in (4.15) has only 2 different eigenvalues, the

mixing problem for the charged fields is as simple as in
the case of 2 fields. It is easily shown (cf. Appendix C)
that V (1) can always be chosen to be a real matrix. Then
in terms of the mass eigenfields the neutral current reads

JµH,NC =
1
2
χ̂T T̂

(0)
3

↔
∂µ χ̂+ iΦ̂†(T̂ (1)

3 − s2)
↔
∂µ Φ̂,

T̂
(0)
3 = V (0)TT

′(0)
3 V (0),

T̂
(1)
3 = V (1)†T

′(1)
3 V (1),

=
(

1
2
δjk − 1

2
V

(1)
1j V

(1)
1k

)
,

(1 ≤ j, k ≤ l). (4.17)

In this model we get thus in accordance with our general
discussion non-diagonal real Z-Higgs-Higgs boson
couplings for the physical Higgs fields. In the next section
we will use this model in order to discuss the possibil-
ity of producing at one-loop level a CP-violating coupling
Zbb̄G which is chirality-conserving and not suppressed by
a factor proportional to the b-mass.
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5 A chirality-conserving CP-violating
Zbb̄G coupling

In [17] the possibility of obtaining an effective CP-viola-
ting and chirality-conserving coupling Zbb̄G

Leff,CP (x) = b̄(x)T aγν [hV b + hAbγ5]b(x)Zµ(x)Gaµν(x)
(5.1)

in renormalizable theories at one-loop level was discussed.
Here b, Zµ are the b quark and Z boson fields, T a = λa/2
are the generators of SU(3)c and Gaµν is the gluon field
strength tensor. In particular it was shown in [17] that
in suitable models, called type I and II, the effective cou-
plings hV b, hAb remained nonzero in the limit mb → 0. In
this section we give an explicit example of a type I model
based on the discussion in sect. 4.

Let us start by writing down the most general SU(2)×
U(1)-invariant Yukawa interaction for quarks in the model
of Sect. 4:

LY uk =
l∑

j=1

3∑
α,β=1

{
−d̄′

αRC
j
αβφ

†
j

(
uβ
d′
β

)
L

+ūαRC
′j
αβφ

T
j ε

(
uβ
d′
β

)
L

+ h.c.

}
(5.2)

Here α, β = 1, 2, 3 are generation indices, Cjαβ and C
′j
αβ

are arbitrary complex numbers, uα, d′
α denote u-type and

d-type fields in the weak isospin basis, and qR,L = (1 ±
γ5)q/2. After spontaneous symmetry breaking and trans-
formation to the mass eigenbasis for the quark fields (5.2)
reduces to

LY uk = −
3∑

α=1

[
mdαd̄αdα +muαūαuα

]
(1 +

χ′
1

v1
√

2
)

+
l∑

j=2

3∑
α,β=1

{
−

3∑
ρ=1

d̄ρRV
†
ραC

j
αβφ

†
j

×
(

uβ∑3
γ=1 Vβγdγ

)
L

(5.3)

+ūαRC
′j
αβφ

T
j ε

(
uβ∑3

γ=1 Vβγdγ

)
L

+ h.c.
}
.

Here V = (Vβγ) is the CKM matrix and C, C ′ denote the
U(l)-transformed Yukawa coupling matrices.

The general Yukawa interaction (5.3) leads to flavour-
changing neutral currents (FCNC). In order to comply
with experimental bounds on FCNC processes one may
either impose an appropriate discrete symmetry on LY uk
or fine-tuning of C, C ′ is required. Here our aim is to
demonstrate a certain property of the Yukawa couplings
of charged Higgs bosons to the third quark-generation,
namely (5.10) below. For this purpose we discuss, as an
example, a model where only the right-handed top quark
couples to all the physical Higgs fields. This is realized by

setting

Cjαβ = 0,

C
′j
αβ = −mt

v1
δα3δβ3β

′
j ,

(j = 2, ..., l). (5.4)

where mt is the top quark mass and β′
j are arbitrary com-

plex numbers. This leads to

LY uk = −
3∑

α=1

[
mdαd̄αdα +muαūαuα

]
(1 +

χ′
1

v1
√

2
)

−
l∑

j=2

{
mt

v1
β′
j t̄R

[
φ1/2,j

3∑
α=1

V3αdαL − φ−1/2,jtL

]

+ h.c.
}

(5.5)

In this way we have no flavour-changing neutral interac-
tions at tree level. Transforming to the mass eigenbasis for
the Higgs fields according to (4.16) gives:

LY uk = −
3∑

α=1

[
mdαd̄αdα +muαūαuα

]

×
[
1 +

1
v1

√
2

2l−1∑
r=1

V
(0)
1r χ̂r

]

−
l∑
i=1

{
mt

v1
β̂it̄RΦ̂i

3∑
α=1

V3αdαL + h.c.

}

+
2l−1∑
r=1

{
mt

v1
β̃r t̄Rχ̂rtL + h.c.

}
; (5.6)

β̂i =
l∑

j=2

β′
jV

(1)
ji , (i = 1, ..., l); (5.7)

β̃r =
1√
2

l∑
j=2

β′
j

(
V

(0)
2j−2,r + iV

(0)
2j−1,r

)
,

(r = 1, ..., 2l − 1). (5.8)

In order to compare with (7) of [17] let us just look at
the φtb coupling implied by (5.6). We get

Lφtb = −mt

v1

l∑
i=1

βit̄RbLΦ̂i + h.c.,

βi = β̂iV33 =
l∑

j=2

β′
jV33V

(1)
ji . (5.9)

It was shown in [17] that in models of the type consid-
ered here one gets nonzero effective CP-violating couplings
(5.1) at the one-loop level, provided that

Imβiβ∗
j 6= 0 for some i 6= j, (5.10)
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and the corresponding Higgs masses are non-degenerate.
Clearly, in view of the large parameter space of the poten-
tial V (4.4), there is no reason why charged Higgs bosons
should be mass-degenerate. Let us see if we can satisfy
also (5.10). For l = 2 we get two charged physical Higgs
fields and (5.9) gives

β1 = β′
2V33V

(1)
21 ,

β2 = β′
2V33V

(1)
22 . (5.11)

Because the V (1)
ij can be chosen to be real without loss of

generality (cf. Appendix C) we get

Im β1β
∗
2 = 0 (5.12)

for arbitrary complex β′
2, V33. Thus, no CP-violating ef-

fective couplings (5.1) can be induced in this model.
For l = 3, i.e., in a model with three charged physical

Higgs fields the parameters βi are

β1 = β′
2V33V

(1)
21 + β′

3V33V
(1)
31 ,

β2 = β′
2V33V

(1)
22 + β′

3V33V
(1)
32 ,

β3 = β′
2V33V

(1)
23 + β′

3V33V
(1)
33 . (5.13)

Because β′
2 and β′

3 are arbitrary complex numbers it is
now easy to realize (5.10), e.g.,

Imβ1β
∗
2 6= 0. (5.14)

Thus in models where we start with one charged SU(2)
Higgs singlet and at least three Higgs doublets we can
in general have effective CP-violating, chirality-conserving
couplings of the type (5.1) which remain nonzero formb →
0. For the calculation of such couplings and a discussion
of their magnitudes we refer to [17].

6 Conclusions

In this article we have analysed, for gauge theories with
gauge group G = SU(2) ×U(1) being spontaneously bro-
ken to the electromagnetic U(1)em group, some general
properties of the coupling of scalar fields to the electro-
weak gauge bosons W±, Z. We allowed the scalar fields to
carry arbitrary representations of G. We found the follow-
ing general results.

The structure of the Z-scalar-scalar coupling is deter-
mined by the charge matrix Q′ and the matrix T ′

3 of the
third component of weak isospin, but both restricted to
the space of physical scalars. We discussed the scalar field
basis for which T ′

3 is diagonal in the charge q 6= 0 sectors
and has a standard form (3.28) in the q = 0 sector. This
basis is in general not the mass eigenbasis and the rotation
from the former to the latter led us to the introduction of
orthogonal respectively unitary rotation matrices similar
to the CKM matrix. We found that non-diagonal (com-
plex) Z-charged scalar couplings in the mass eigenbasis
require at least two (three) different eigenvalues of T ′

3 in
the corresponding charge sector.

Finally we investigated models with one charged Higgs
singlet and any number l of Higgs doublets. In these mod-
els the Z-charged Higgs couplings in the mass eigenbasis
can always be made real by a suitable rotation of fields.
We considered then the coupling of these fields to quarks
and gave examples of models where no flavour-changing
neutral interactions at tree level occur. We showed that
for l ≥ 3 these models satisfy all requirements to have
CP-violating and chirality-conserving effective Zbb̄G cou-
plings (5.1) at the one-loop level as investigated in detail
in [17]. Such couplings are then not suppressed by factors
containing small quark masses. Thus further experimental
search for such CP-violating couplings, which have been
considered theoretically in [17]-[19] and experimentally in
[20,21], should be quite interesting. Nonzero couplings of
this kind would point to a rich structure in the scalar sec-
tor as shown in this article.
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Appendix A: Some properties
of the SU(2) × U(1) representation carried
by the Scalar Fields

Consider the real representation (2.15) of G = SU(2) ×
U(1) in the space of the real n-component Higgs fields
χ(x) ∈ Rn for each x (cf. (2.14). We can trivially embed
Rn in the complex n-dimensional space Cn and consider
the orthogonal representation (2.15) of G as unitary rep-
resentation of G in Cn:

R(U) : Cn → Cn,

R†(U)R(U) = 1l. (A.1)

For the representation U → R(U), considered as unitary
representation of G, all the standard results apply: It can
be reduced completely. The hermitian generators are

Ta =
1
i
T̃a, (a = 1, 2, 3);

Y =
1
i
Ỹ . (A.2)

The irreducible parts of the representation are charac-
terised by (t, y) where t ∈ {0, 1/2, 1, ...} with t(t+ 1) and
y the eigenvalues of

TaTa = −T̃aT̃a, and Y, respectively. (A.3)

Let y1, ..., yn be the eigenvalues of Y . Clearly, the
eigenvalues of

Y 2 = −Ỹ Ỹ = Ỹ T Ỹ (A.4)

are then y2
j (j = 1, ..., n), as introduced after (2.20).
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Now we want to discuss whether the representation
U → R(U) in (A.1) is single- or multiple-valued. For the
SU(2) part of the group G there is no problem, since
SU(2) is singly connected. But the U(1) part of G is mul-
tiply connected. The representation matrices of the group
elements U(0, ψ) in (2.1) corresponding to the U(1) factor
of G are:

U(0, ψ) = eiψy0 → exp(iψY )

= A†diag (eiψy1 , ..., eiψyn)A. (A.5)

Here A is the matrix which diagonalises Y in Cn. With
the condition (2.21) we have

eiψyj |ψ=πy−1
0

= eiψyj |ψ=−πy−1
0

(j = 1, ..., n) (A.6)

and thus the representation is single-valued: There is a
single element R(U) which corresponds to the element
U(0,±π) = (−1l) ∈ G.

We will now show that the representation U → R(U),
considered as a unitary representation in Cn has the fol-
lowing property: If the irreducible representation (t, y) ap-
pears in the decomposition of the representation, then also
(t,−y) must occur. Furthermore the irreducible represen-
tations (t, y) and (t,−y) must have the same multiplicity.
To prove this, we note that due to (2.17) and (A.2) we
have

(TaTa)T = (TaTa),

Y T = −Y. (A.7)

Consider now the double resolvent:

1
(ξ − TaTa)(η − Y )

=
∑
t,y

P(t, y)
[ξ − t(t+ 1)](η − y)

, (A.8)

where ξ, η are arbitrary complex numbers and P(t, y) is
the projector onto the subspace of Cn carrying the repre-
sentation (t, y) of G. (The irreducible representation (t, y)
may occur with multiplicity one or higher). We have∑

t,y

P(t, y) = 1l,

P(t, y)† = P(t, y). (A.9)

From (A.7) we get

[
1

(ξ − TaTa)(η − Y )

]T
=

1
(ξ − TaTa)(η + Y )

(A.10)

which leads to

∑
t,y

P(t, y)T

(ξ − t(t+ 1))(η − y)
=
∑
t,y

P(t, y)
(ξ − t(t+ 1))(η + y)

.

(A.11)
Comparing the location of the poles in (ξ, η) and the
residues on the r.h.s. and l.h.s. of (A.11) we find that with

(t(t + 1), y) also (t(t + 1),−y) must be the location of a
pole and

P(t,−y) = P(t, y)T . (A.12)

This shows that the representations (t, y) and (t,−y) oc-
cur with the same multiplicity, q.e.d.

Next we want to show the following theorem: If the
vacuum expectation value v (2.24) satisfies

P(t, y)v 6= 0, (A.13)

then y must be one of the eigenvalues of T3 in the repre-
sentation (t, y):

y ∈ {−t,−t+ 1, ..., t}. (A.14)

The proof is as follows: We have for the hermitian electric
charge generator Q = 1

i Q̃:

Q = T3 + Y = (T3 + Y ) · 1l

= (T3 + Y )
∑
t,y

P(t, y)

=
∑
t,y

(T3 + y)P(t, y). (A.15)

From Qv = 0 (cf. (2.25)) and the fact that T3 commutes
with P(t, y), we get

Qv =
∑
t,y

(T3 + y)P(t, y)v

=
∑
t,y

P(t, y)(T3 + y)P(t, y)v = 0,

=⇒
P(t, y)(T3 + y)P(t, y)v = 0,

=⇒
(T3 + y)P(t, y)v = 0. (A.16)

Thus, if P(t, y)v 6= 0, then y is one of the eigenvalues of
T3 in the representation (t, y) of G, q.e.d.

From (A.12) we get for all (t, y):

vTP(t, y)v = vTP(t,−y)v
= v†

P(t, y)v ≥ 0. (A.17)

Appendix B: Properties of gauge orbits
of scalar fields

In this appendix we derive some properties of the gauge
orbits of our general n component real scalar field χ in
relation to the unitary gauge condition (2.38). In the fol-
lowing Rn−3, as defined in (2.39), is the subspace of the
real vectors χ satisfying the gauge condition (2.38).

Theorem 1: If χ ∈ Rn−3, then also χ1 ∈ Rn−3 where

χ1 = R(U)χ (B.1)

with U an arbitrary element of the electromagnetic sub-
group Uem(1) ⊂ G.



W. Bernreuther, O. Nachtmann: Flavour dynamics with general scalar fields 331

Proof: For an arbitrary element U ∈ Uem(1) we have with
Q̃ as in (2.19)

U = exp[iψ̃(
1
2
τ3 + y0)],

χ1 = R(U)χ

= exp(ψ̃.Q̃)χ. (B.2)

Then, using the commutation relations (2.20), we find im-
mediately

vT T̃aχ1 = vT T̃a exp(ψ̃Q̃)χ = 0, (B.3)

if vT T̃aχ = 0 holds, i.e. if χ ∈ Rn−3. But (B.3) means that
χ1 ∈ Rn−3, q.e.d.

Theorem 2: There is no further subgroup Ḡ ⊂ G, Ḡ 6=
Uem(1), which leaves Rn−3 invariant. In other words: If
for all χ ∈ Rn−3 also R(U)χ ∈ Rn−3, then U ∈ Uem(1).

Proof (indirect): Assume, on the contrary, that Ḡ is
a subgroup of G, Ḡ 6= Uem(1), which leaves Rn−3 invari-
ant. Then Ḡ contains at least one one-parameter subgroup
Ū(1) 6= Uem(1). We must then have the following for the
elements Ū of Ū(1)

R(Ū) = exp(ψ̃ ˜̄Q),
(Ū ∈ Ū(1)), (B.4)

where ˜̄Q is the matrix representing the generator of Ū(1):

˜̄Q = raT̃a + r4Q̃ (B.5)

with ra(a = 1, 2, 3) and r4 real numbers and

(r1, r2, r3) 6= (0, 0, 0), (B.6)

since Ū(1) 6= Uem(1) by assumption. Furthermore Ū(1)
leaves Rn−3 invariant, which means:

vT T̃aR(Ū)χ = vT T̃a exp(ψ̃ ˜̄Q)χ = 0 (B.7)

for all χ ∈ Rn−3.
From (B.7) we find by differentiating with respect to

ψ̃ at ψ̃ = 0:
vT T̃a

˜̄Qχ = 0 (B.8)

for all χ ∈ Rn−3.
From the definition of Rn−3 in (2.39) we see that (B.8)

can only hold if the vectors vT T̃a ˜̄Q are linearly dependent
on vT T̃b (b = 1, 2, 3):

vT T̃a
˜̄Q = habv

T T̃b, (hab real). (B.9)

Multiplying by v from the right and using (2.27) we get

vT T̃a
˜̄Qv = 0, (B.10)

=⇒
vT T̃a(rbT̃b + r4Q̃)v = 0. (B.11)

Since Q̃v = 0 we get

vT T̃a(rbT̃bv) = 0. (B.12)

Multiplying with ra (a = 1, 2, 3) and summing yields:

(vT T̃Ta ra) · (rbT̃bv) = 0,
=⇒ (B.13)

rbT̃bv = 0. (B.14)

Since T̃bv are linearly independent (cf. (2.26)), it fol-
lows that (B.14) can only hold if (r1, r2, r3) = (0, 0, 0).
But this is a contradiction to (B.6). Thus, the assumption
Ḡ 6= Uem(1) is disproved and theorem 2 holds.

Let us now define rest classes in G with respect to
Uem(1):

U ∼ U ′ (B.15)

if UU ′−1 ∈ Uem(1). Let Ĝ be the set formed by these rest
classes, i.e. the set of right cosets of Uem(1). A parame-
trization of Ĝ in a neighbourhood of the coset of the unit
element of G is given by the elements of SU(2) ⊂ G (cf.
(2.1))

U(ϕ, 0) = exp(i
1
2
τaϕa) (B.16)

with corresponding representation matrices

R(U(ϕ, 0)) = exp(ϕbT̃b). (B.17)

In general the elements U ∈ G which transform a given
vector χ ∈ Rn into a vector χ1 ∈ Rn−3

R(U)χ = χ1 ∈ Rn−3 (B.18)

form isolated points in the coset space Ĝ.
This can be shown as follows. Let χ be an arbitrary

vector from Rn and let U1 ∈ G be a transformation such
that

R(U1)χ = χ1 ∈ Rn−3. (B.19)

A suitable parametrization for the cosets in a neighbour-
hood of the coset of U1 is given by the following elements
of G:

U(ϕ, 0) · U1. (B.20)

We have to study the system of equations

ha(ϕ) : = vT T̃aR(U(ϕ, 0))R(U1)χ

= vT T̃aR(U(ϕ, 0)χ1

= 0 (B.21)

near ϕ = 0. We have

∂

∂ϕb
ha(ϕ)

∣∣∣∣
ϕ=0

= vT T̃aT̃bχ1. (B.22)

The point ϕ = 0 is an isolated solution of (B.21) if

det(vT T̃aT̃bχ1) 6= 0. (B.23)
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If this determinant equals zero, ϕ = 0 need not be an
isolated solution.

Let us define the set

M ′ = {χ1|χ1 ∈ Rn−3, det(vT T̃aT̃bχ1) = 0}. (B.24)

The determinant being zero represents one algebraic equa-
tion for the vectors χ1 ∈ Rn−3. Thus the dimension of M ′
can be at most n− 4.

Theorem 3: There exists a neighbourhood of the vacuum
expectation value χ1 = v in Rn−3 which has no point in
common with M ′.

Proof: Since Tav (a = 1, 2, 3) are linearly independent (cf.
(2.26)) we have

det(vT T̃aT̃bv) 6= 0. (B.25)

By continuity we have then

det(vT T̃aT̃bχ1) 6= 0 (B.26)

for χ1 in a suitable neighbourhood of v in Rn−3, q.e.d.

Theorem 4: The manifold M ′ is invariant under the ac-
tion of the electromagnetic group Uem(1):

χ2 = R(U)χ1 ∈ M ′ if χ1 ∈ M ′ and U ∈ Uem(1).
(B.27)

Proof: Indeed, for U ∈ Uem(1) we have with the notation
according to (B.2):

RT (U)T̃aR(U) = = exp(ψ̃Q̃T )T̃a exp(ψ̃Q̃)

= exp(−ψ̃T̃3)T̃a exp(ψ̃T̃3)

= Dab(U ′)T̃b, (B.28)

where U ′ = exp(iψ̃τ3/2) and (Dab(U ′)) is the matrix of
the adjoint representation of SU(2). We get then:

vT T̃aT̃bχ2 = vTR(U)RT (U)T̃aR(U)RT (U)T̃bR(U)χ1

= Daa′(U ′)Dbb′(U ′)vT T̃a′ T̃b′χ1,

=⇒
det(vT T̃aT̃bχ2) = det(vT T̃a′ T̃b′χ1), (B.29)

q.e.d.
Consider next the manifold M ∈ Rn of those Higgs

fields χ whose gauge orbits intersect Rn−3 in M ′:

M = {χ|χ ∈ Rn, such that there exists
U1 ∈ G with R(U1)χ = χ1 ∈ M ′}. (B.30)

We have then

χ = R−1(U1)χ1, χ1 ∈ M ′. (B.31)

Since M ′ is invariant under the action of Uem(1) it is suf-
ficient to choose for U1 in (B.31) only one representative
of each right coset of Uem(1). This means that the param-
eters needed to describe the manifold M are those of M ′
(at most n−4) and the 3 parameters (at most) of the coset

space Ĝ. Thus M has at most dimension n−4+3 = n−1
and is a set of measure zero in Rn.

We summarize these findings as follows.

Theorem 5: The elements U ∈ G which transform a
given Higgs field χ ∈ Rn (at a given space-time point) into
a vector χ1 satisfying the gauge condition (2.38) belong
for general χ to isolated points in the coset space Ĝ. The
vectors χ ∈ Rn where this is not the case form a manifold
M of dimension ≤ n− 1 in Rn and thus a set of measure
zero.

Finally, let us discuss the question of multiple inter-
sections of the gauge orbit of a vector χ with Rn−3 (2.39).
For given χ ∈ Rn we have

χ1 = R(U0)χ ∈ Rn−3,

where U0 ∈ G is the transformation that maximises the
function f(U) (2.40). It is clear that also the element U ′

0 ∈
G which minimises f(U):

f(U) ≥ f(U ′
0) for all U ∈ G

leads to an intersection of the gauge orbit of a vector χ
with Rn−3:

χ2 := R(U ′
0)χ ∈ Rn−3.

The same holds true for all stationary points of f(U).
Thus, in general, the gauge orbit of χ will have multiple
intersections with Rn−3. Consequently the gauge condi-
tion (2.38) can and must be sharpened by restricting χ
to a region in Rn−3 where the gauge orbits have single
intersections only. A suitable restriction is to the region
in Rn−3 defined by the absolute maxima of the functions
f(U):

R′
n−3 = {χ|χ ∈ Rn−3,

vTR(U)χ ≤ vTχ for all U ∈ G} (B.32)

Here we assume that the absolute maxima of vTR(U)χ
have no degeneracy (except for a set of measure zero).

In the SM with one Higgs doublet the restriction of
the form (B.32) is, of course, well known. Taking it into
account in the path integral quantisation by the method
of Fadeev and Popov [22] one finds that even in the uni-
tary gauge ghost fields are required. This was first demon-
strated in the canonical quantisation procedure by Wein-
berg [5].

Appendix C: Properties of the matrix V (1)

In this appendix we show that the matrix V (1) of (4.16)
can always be chosen to be real. According to (3.54) we
are free to make the transformations

V (1) → U†
1V

(1)U2 (C.1)

where
U2 = diag(eiψ1 , ..., eiψl). (C.2)
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and U1 is a unitary l × l matrix commuting with T
′(1)
3

(4.15). Thus U1 must have the form

U1 =

(
eiϕ1 0
0 U ′

1

)
(C.3)

with U ′
1 being a unitary (l − 1) × (l − 1) matrix.

With a suitable choice of U1 and U2 in (C.1) we can
achieve

V
(1)
11 , V

(1)
12 , ..., V

(1)
1l real,

V
(1)
21 real, V (1)

31 = ... = V
(1)
l1 = 0. (C.4)

Two cases can be distinguished: (i) V (1)
21 = 0. Then ap-

plying (C.1) we can immediately bring V (1) to the real
form:

V (1) =

(
V

(1)
11 0
0 1ll−1

)
. (C.5)

(ii) V (1)
21 6= 0. Then the unitarity relations for V (1)

require
V

(1)
22 , ..., V

(1)
2l real.

By a suitable choice of U1, U2 in (C.1) we can then achieve

V
(1)
32 real, V (1)

42 = ... = V
(1)
l2 = 0 (C.6)

and repeat the above reasoning (i) and (ii) with V (1)
32 play-

ing the role of V (1)
21 . In this way we see that indeed V (1)

can be made real by a transformation (C.1).
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